Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Packing considerations of bis-dimedone derivatives

Michael Bolte,* Alexander Degen and Stephan Rühl

Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-
Straße 11, 60439 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 13 December 2000
Accepted 25 January 2001
We have determined the crystal structures of 2,2'-(4-fluoro-phenyl)methylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1one), $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FO}_{4}$, (I), 2,2'-(4-chlorophenyl)methylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one), $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}_{4}$, (II), 2,2'-(4-hydroxyphenyl)methylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one), $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}$, (III), 2,2'-(4-methylphenyl)-methylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one), $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$, (IV), 2,2'-(4-methoxyphenyl)methylenebis(3-hy-droxy-5,5-dimethyl-2-cyclohexen-1-one), $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}$, (V), and 2,2'-(4- N, N^{\prime}-dimethylaminophenyl)methylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one), $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}$, (VI). Structures (III) to (VI) of these bis-dimedone derivatives show nearly the same packing pattern irrespective of the different substituent in the para position of the aromatic ring. However, (II) does not fit into this scheme, although the Cl atom is a substituent not too different from the others. The different packing of the fluoro compound, (I), can be explained by the fact that it crystallizes with two molecules in the asymmetric unit, which show a different conformation of the dimedone ring. On the other hand, (I) shows a similar packing pattern to bis(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexenyl)phenylmethane, a compound containing an aromatic ring without any substituent and with $Z^{\prime}=2$.

Comment

The introduction of area detectors has led to a significant reduction in the time needed for data collection and, as a result, to an increase in the number of determined structures. In the course of this development, problem structures, especially twins, have attracted the interest of crystallographers (Herbst-Irmer \& Sheldrick, 1998). Some years ago, we accidentally encountered the twinned crystal structures of two similar compounds bearing the bis-dimedone moiety, namely bis(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexenyl)phenylmethane, (VII) (Bolte et al., 1997), and 2,2'-methylenebis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one), (VIII) (Bolte \& Scholtyssik, 1997). Since these compounds can be prepared easily (Hünig et al., 1979), we decided to synthesize various derivatives with the objective of finding out if these are also
twinned. Unfortunately, none of these structures turned out be twinned. On the other hand, a closer inspection of the determined structures revealed that their packing patterns are characterized by striking similarities. Thus, we present in this paper a comparison of compounds containing the bis-dimedone moiety, (I)-(VI).

The main geometric feature of all eight compounds (see Scheme above) is that two strong intramolecular hydrogen bonds are formed (Table 1) connecting the two cyclohexenone rings and forming two new eight-membered rings. Average values for bond lengths and angles of the dimedone moiety of the six structures in this paper and the two already published show very small standard deviations (Fig. 1). The $\mathrm{C}-\mathrm{C}$ single bond between the carbonyl bond and the $\mathrm{C}=\mathrm{C}$ double bond is significantly shortened, while the other bonds show normal values. Comparing these structures with $2,2^{\prime}$-ethylenebis(1,3cyclohexanedione) (Bertolasi et al., 1996) reveals the influence of the two methyl groups on the geometry of the ring. In the latter, the two $\mathrm{C}-\mathrm{C}$ bonds adjacent to the methyl groups are shortened to a mean value of 1.498 (5) \AA, whereas the angle between these two bonds is increased to 110.0 (6) ${ }^{\circ}$
Compounds (I) (Figs. $2 a$ and $2 b$) and (VII) are very similar. The only difference is the F atom in the para position of the

Figure 1

Mean bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the dimedone moiety with s.u.'s in parentheses.
aromatic ring. Both compounds crystallize with two molecules in the asymmetric unit. All four cyclohexenone rings in (I) and (VII) display envelope conformations, but the difference between them is that in three of the four rings, the C atom carrying two methyl groups is directed towards the aromatic ring, but in one case it is bent away from the aromatic residue. A least-squares fit of all non-H atoms excluding the fluorine substituents of the two corresponding molecules in the asymmetric unit of (I) and (VII) (r.m.s. deviation $=0.092$ and $0.132 \AA$, respectively) reveals that the substitution by an F atom does not cause any major difference in the conformation of the molecule. The cell parameters of both crystal structures look rather similar and both compounds crystallize in an I-centred tetragonal space group, but whereas for (VII) the centrosymmetric space group $I 4_{1} / a$ was found, (I) shows the non-centrosymmetric space group $I 4_{1} c d$, thus, not only the

(a)

(b)

Figure 2
Perspective view of (a) molecule 1 and (b) molecule 2 of (I) with the atomic numbering; displacement ellipsoids are at the 50% probability level.
space groups, but also the Laue groups are different. But in spite of the different space groups, the packing pattern of both compounds is almost identical (Figs. 3 and 4).

Figure 3
Packing diagram of (I); the view is onto the $b c$ plane.

Figure 4
Packing diagram of (VII); the view is onto the $b c$ plane.

Figure 5
Perspective view of (II) with the atomic numbering; displacement ellipsoids are at the 50% probability level.

Compound (II) (Fig. 5), whose structure has been determined recently at room temperature (Shi et al., 1998), contains a Cl atom in the para position of the phenyl ring. In contrast to (I) and (VII), where one apex of a cyclohexenone ring is bent away from the aromatic ring, in (II) and all remaining structures, all apices are directed towards the aromatic ring. Furthermore, all compounds except (I) and (VII) crystallize with just one molecule in the asymmetric unit. A least-squares fit of all C and O atoms of (II) and molecule 1 of (I) (r.m.s. deviation $=0.146 \AA$) shows that the exchange of fluorine for chlorine does not change the molecular conformation markedly. On the other hand, the crystal packing of (II) and (I) is completely different. This might be due to the fact that in (I) and (VII) there are two molecules in the asymmetric unit (in which the cyclohexenone rings display a different conformation), whereas $Z^{\prime}=1$ in (II).

Figure 6
Perspective view of (III) with the atomic numbering; displacement ellipsoids are at the 50% probability level.

Figure 7
Perspective view of (IV) with the atomic numbering; displacement ellipsoids are at the 50% probability level.

In (III) (Fig. 6), the phenyl ring bears a hydroxyl group in the para position, which forms an intermolecular hydrogen bond to the hydroxyl O22 atom. As a result, two molecules form a centrosymmetric hydrogen-bonded dimer.

Compound (IV) (Fig. 7) carries a methyl group in the para position of the phenyl ring.

Substituting the methyl group in (IV) with a methoxy group leads to (V) (Fig. 8). The torsion angles C35-C34-O341C341 [0.4 (2) ${ }^{\circ}$] and C33-C34-O341-C341 [180.0 (2) ${ }^{\circ}$] show that the methoxy group lies in the plane of the phenyl ring.

In (VI) (Fig. 9), the phenyl ring carries a dimethylamino group in the para position. The environment around the N atom can be described as trigonal planar [C34-N34-C342 $120.3(2)^{\circ}$, C34-N34-C341 120.2 (2) ${ }^{\circ}$ and C342-N34C341 118.9 (2) ${ }^{\circ}$]. Whereas one of the methyl groups lies nearly exactly in the plane of the aromatic ring [C33-C34-N34-C341-0.9 (3) ${ }^{\circ}$ and C35-C34-N34-C341-179.1 (2) ${ }^{\circ}$, the

Figure 8
Perspective view of (V) with the atomic numbering; displacement ellipsoids are at the 50% probability level.

Figure 9
Perspective view of (VI) with the atomic numbering; displacement ellipsoids are at the 50% probability level.
other one is slightly displaced from this plane [C35-C34-N34-C342 $10.3(3)^{\circ}$ and $\mathrm{C} 33-\mathrm{C} 34-\mathrm{N} 34-\mathrm{C} 342$ $\left.-171.5(2)^{\circ}\right]$.

The most remarkable feature of compounds (III) to (VI) is that they display almost the same crystal packing (Figs. 10-12). All molecules crystallize in space group $P 2_{1} / n$ and their cell parameters are very similar. Even the coordinates of corresponding atoms reveal striking similarities, e.g. the coordinates of (V) and (VI) are nearly equal. The mean and maximum differences between the fractional coordinates are: 0.04 (2), 0.02 (1) and 0.009 (5), and $0.084,0.042$ and 0.019 for x, y and z, respectively. Figs. 10-12 show a superimposition of the different structures. These packing diagrams demonstrate clearly that the molecules pack in a very similar way. Compound (II), on the other hand, crystallizes in a different way. The only similarity with compounds (III) to (VI) is the

Figure 10
Packing diagram showing the superimposition of the structure of (III) (solid lines) on that of (IV) (broken lines).

Figure 11
Packing diagram showing the superimposition of the structure of (VI) (solid lines) on that of (V) (broken lines).

Figure 12
Packing diagram showing the superimposition of the structure of (IV) (solid lines) on that of (V) (broken lines).
length of the b axis. Summarizing, it can be said that for compounds (III) to (VI) the main part of the molecules determines the packing pattern, whereas the nature of the substituent in the para position of the phenyl ring is only of minor importance. However, compound (II) does not fit into this scheme.

Experimental

Compounds (I)-(VI) were synthesized according to the methods of Nagarajan \& Shenoy (1992) and Cremlyn \& Saunders (1993).

Compound (I)

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FO}_{4}$
$M_{r}=386.45$
Tetragonal, $I 4_{1} c d$
$a=21.186$ (4) \AA
$c=36.633$ (1) \AA
$V=16443(4) \AA^{3}$
$Z=32$
$D_{x}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens CCD three-circle diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.952, T_{\text {max }}=0.978$
97175 measured reflections
4615 independent reflections
3818 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.083$
$S=1.046$
4615 reflections
521 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=0-25^{\circ}$
$\mu=0.090 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.55 \times 0.40 \times 0.25 \mathrm{~mm}$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=27.10^{\circ}$
$h=-27 \rightarrow 27$
$k=-27 \rightarrow 27$
$l=-46 \rightarrow 46$
543 standard reflections frequency: 1200 min intensity decay: none

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0294 P)^{2}\right. \\
&+9.1605 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Compound (II)

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}_{4}$
$M_{r}=402.90$
Monoclinic, $P 2_{1} / c$
$a=14.892$ (1) \AA
$b=11.813$ (1) \AA
$c=13.351$ (1) \AA
$\beta=115.78(1)^{\circ}$
$V=2114.9(3) \AA^{3}$
$Z=4$

Data collection

Siemens CCD three-circle diffractometer

ω scans

Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.897, T_{\text {max }}=0.930$
39320 measured reflections
4667 independent reflections
3419 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.100$
$S=1.007$
4667 reflections
262 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4736
\quad reflections
$\theta=0-25^{\circ}$
$\mu=0.206 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Block, colourless
$0.54 \times 0.42 \times 0.36 \mathrm{~mm}$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.10^{\circ}$
$h=-19 \rightarrow 19$
$k=-15 \rightarrow 15$
$l=-17 \rightarrow 17$
321 standard reflections frequency: 1200 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0442 P)^{2}\right. \\
& \quad \quad+0.8901 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0041(8)
\end{aligned}
$$

Compound (IV)

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=382.48$
Monoclinic, $P 2_{1} / c$
$a=9.339$ (1) \AA
$b=11.638$ (1) A
$c=20.052(1) \AA$
$\beta=102.65$ (1) ${ }^{\circ}$
$V=2126.5(3) \AA^{3}$
$Z=4$

Data collection

Siemens CCD three-circle diffract- $\quad R_{\text {int }}=0.032$
ometer $\quad \theta_{\text {max }}=27.48^{\circ}$
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min }=0.946, T_{\max }=0.976$
40291 measured reflections
4868 independent reflections
3895 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.111$
$S=1.038$
4868 reflections
263 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.195 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=0-25^{\circ}$
$\mu=0.080 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.70 \times 0.45 \times 0.30 \mathrm{~mm}$
$h=-12 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-26 \rightarrow 26$
503 standard reflections frequency: 1200 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0494 P)^{2}\right. \\
& +0.6993 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{\AA^{-3}}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0092 \text { (10) }
\end{aligned}
$$

Compound (III)

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}$
$M_{r}=384.45$
Monoclinic, $P 2_{1} / c$
$a=9.736(2) \AA$
$b=11.370(3) \AA$
$c=18.263(3) \AA$
$\beta=99.54(1)^{\circ}$
$V=1993.7(7) \AA^{3}$
$Z=4$

Data collection

Siemens CCD three-circle diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.957, T_{\text {max }}=0.991$
16535 measured reflections
4076 independent reflections
1722 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.226$
$S=1.223$
4076 reflections
266 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3615 reflections
$\theta=0-25^{\circ}$
$\mu=0.089 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, colourless
$0.50 \times 0.20 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.090 \\
& \theta_{\max }=26.37^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-14 \rightarrow 12 \\
& l=-22 \rightarrow 22 \\
& 419 \text { standard reflections } \\
& \text { frequency: } 1000 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0852 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.009(2)
\end{aligned}
$$

Compound (V)

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}$
$M_{r}=398.48$
Monoclinic, $P 2_{1} / n$
$a=8.916$ (2) Å
$b=11.573$ (2) \AA
$c=21.106$ (5) \AA
$\beta=98.15$ (1) ${ }^{\circ}$
$V=2155.8(8) \AA^{3}$
$Z=4$

Data collection

Siemens CCD three-circle diffract- $\quad R_{\text {int }}=0.058$
ometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min }=0.943, T_{\max }=0.975$
40510 measured reflections
4937 independent reflections
3429 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.114$
$S=1.000$
4937 reflections
271 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.228 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5837

> reflections
$\theta=0-25^{\circ}$
$\mu=0.085 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.70 \times 0.40 \times 0.30 \mathrm{~mm}$
$\theta_{\text {max }}=27.48^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-27 \rightarrow 27$
266 standard reflections frequency: 1200 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0411 P)^{2}\right. \\
& +1.1616 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 }
\end{aligned}
$$

(Sheldrick, 1997)
Extinction coefficient: 0.0055 (7)

Compound (VI)

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}$
$M_{r}=411.52$
Monoclinic, $P 2_{1} / n$
$a=9.223(1) \AA$
$b=12.012(1) \AA$
$c=20.661(1) \AA$
$\beta=101.42(1)^{\circ}$
$V=2243.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.218 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
\quad reflections
$\theta=0-25^{\circ}$
$\mu=0.082 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Block, colourless
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$

$R_{\text {int }}=0.059$
$\theta_{\text {max }}=27.10^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-26 \rightarrow 26$
296 standard reflections
frequency: 3600 min
intensity decay: none

4957 independent reflections
3598 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.131$
$S=1.029$
4957 reflections
282 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$) for compounds (I)-(VI).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
(I)				
O12-H12 \cdots O26	0.95 (4)	1.68 (4)	2.590 (3)	161 (4)
O22-H22 . O 16	0.85 (4)	1.81 (4)	2.636 (3)	164 (4)
$\mathrm{O} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 26 A$	0.85 (4)	1.77 (4)	2.564 (3)	154 (3)
$\mathrm{O} 22 A-\mathrm{H} 22 A \cdots \mathrm{O} 16 A$	0.86 (5)	1.85 (5)	2.701 (4)	174 (5)
(II)				
O12-H12 . O 26	1.09 (3)	1.50 (3)	2.5845 (16)	169 (3)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 16$	1.17 (4)	1.44 (4)	2.6018 (18)	169 (3)
(III)				
O12-H12 . O 26	1.06 (6)	1.66 (6)	2.667 (4)	157 (5)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 16$	0.96 (7)	1.62 (7)	2.561 (4)	165 (6)
O34-H34 . $\mathrm{O}^{2} 2^{\text {i }}$	1.09 (6)	1.84 (5)	2.876 (4)	156 (4)
(IV)				
O12-H12 . O 26	0.98 (2)	1.73 (2)	2.6946 (16)	168 (2)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 16$	0.99 (2)	1.60 (2)	2.5714 (13)	168.0 (18)
(V)				
O12-H12 . O 26	0.94 (3)	1.79 (3)	2.714 (2)	166 (3)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 16$	0.94 (3)	1.63 (3)	2.5558 (17)	167 (2)
(VI)				
O12-H12 . O 26	1.03 (4)	1.67 (4)	2.686 (2)	168 (3)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 16$	1.05 (3)	1.55 (3)	2.5821 (19)	166 (3)

Symmetry code: (i) $2-x, 1-y, 1-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1446). Services for accessing these data are described at the back of the journal.

References

Bertolasi, V., Gilli, P., Ferretti, V. \& Gilli, G. (1996). Chem. Eur. J. 2, 925-934. Bolte, M., Degen, A. \& Rühl, S. (1997). Acta Cryst. C53, 340-342.
Bolte, M. \& Scholtyssik, M. (1997). Acta Cryst. C53, 1869-1871.
Cremlyn, R. J. \& Saunders, D. (1993). Phosphorus Sulfur Silicon, 81, 73-82. Herbst-Irmer, R. \& Sheldrick, G. M. (1998). Acta Cryst. B54, 443-449.
Hünig, S., Märkl, G. \& Sauer, J. (1979). In Integriertes Organisches Praktikum. Weinheim: VCH.
Nagarajan, K. \& Shenoy, S. J. (1992). Indian J. Chem. Ser. B, 31, 73-87. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shi, D.-Q., Tu, S.-J. \& Dai, G.-Y. (1998). Chin. J. Struct. Chem. (Jiegou Ниахие), 17, 221-224.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

